
Instrukcja przed etapem powiatowym konkursu
zDolny Ślązak z informatyki

Na etapie powiatowym zawodnicy rozwiązują test, w którym należy odpowiedzieć na pytania dotyczące pro-
gramów komputerowych w językach C++ i Python, a odpowiedzi należy zapisać na karcie odpowiedzi, podobnej
do karty odpowiedzi z etapu szkolnego. Na rozwiązanie testu zawodnicy mają 90 minut.

Każde zadanie na etapie powiatowym będzie zawierało kod zapisany w C++ i jego równoważny wariant zapi-
sany w Pythonie oraz pewną liczbę pytań dotyczącą analizy tego programu. Pytania będą dobrane w taki sposób,
że na niektóre z nich można odpowiedzieć jedynie analizując i rozumiejąc działanie kodu (tzn. bez użycia komputera).
Część pytań będzie wymagała umiejętności uruchomienia programów na komputerze, a nawet drobnych modyfikacji
zaprezentowanych w arkuszu programów. Wystarczy znajomość jednego z języków programowania.

Podczas rozwiązywania testu zawodnicy mają do dyspozycji komputer z dostępem do internetowego środowiska
uruchomieniowego języków C++ oraz Python. W dalszej części tego dokumentu znajduje się instrukcja obsługi
środowiska OnlineGDB, które jest zalecanym środowiskiem do pracy i obsługuje oba te języki.

Przykładowe zadanie obrazujące format etapu powiatowego (wraz z jego analizą i przedstawieniem wzorcowego
sposobu rozwiązania) znajduje się na końcu tego dokumentu.

Uwaga: Podczas zawodów, zawodnicy mogą używać internetu jedynie w celu pracy w internetowym środowisku
uruchomieniowym. W szczególności zakazane jest komunikowanie się z innymi ludźmi lub używanie narzędzi
sztucznej inteligencji. Członkowie komisji powiatowych czuwają nad poprawnym przebiegiem zawodów i dbają
o przestrzeganie przez zawodników powyższej zasady.

Komisje powiatowe gwarantują działanie środowiska OnlineGDB. Działanie innych (internetowych lub zainsta-
lowanych na komputerach) środowisk nie jest gwarantowane i używanie ich nie jest zalecane, chociaż jest dozwolone
(pod warunkiem przestrzegania zasad opisanych powyżej).

Instrukcja obsługi internetowego środowiska uruchomieniowego OnlineGDB
W przeglądarce internetowej wprowadzamy adres strony https://onlinegdb.com. Naszym oczom powinna uka-

zać się następująca strona:

Pierwszym krokiem powinno być wybranie języka programowania z rozwĳalnej listy w prawym górnym rogu
strony obok napisu Language. Zalecamy wybór C++23 lub Python 3.

Po wybraniu języka, strona uzupełni kod (na czarnym tle) stosownym przykładem. W tym miejscu należy wpisać
kod programu. Można pisać własny program lub przepisać z kartki program z zadania. Możliwe jest zmienianie lub
wzbogacanie programu z kartki o swoje własne instrukcje.

https://onlinegdb.com

Po napisaniu programu, w dolnej części okna możemy wybrać opcję Text obok Standard Input. W polu poniżej
możemy wtedy wprowadzić dane, które chcemy przekazać na wejściu do programu.

W poniższym przykładzie napisaliśmy program, który wczytuje z wejścia liczbę naturalną i wypisuje na wyjście
ciąg nieujemnych liczb całkowitych mniejszych od liczby wczytanej z wejścia. Postanawiamy go uruchomić dla danej
10.

W górnej części okna znajduje się przycisk Run, który pozwala uruchomić program. Po jego kliknięciu, w dolnej
części okna otrzymamy wynik działania programu.

Gdyby nasz program zawierał błąd składniowy, zamiast wyniku działania moglibyśmy uzyskać informację o błę-
dzie kompilacji programu.

W poniższym przykładzie zapomnieliśmy średnika w linii 7, przez co utworzenie zmiennej liczba nie powiodło
się. Po kliknięciu przycisku Run otrzymamy informację o błędzie. Możliwe jest poprawienie błędu i ponowne urucho-
mienie programu. Możliwe jest też przełączenie zakładki z stderr na input (w dolnej części okna) i wprowadzenie
innych danych do poprawionego programu.

W analogiczny sposób możemy obsługiwać programy napisane w Pythonie. Należy pamiętać o wybraniu odpo-
wiedniego języka z listy na górze po prawej (opcja Language powinna być ustawiona na Python 3). Dane wejściowe
do programu również możemy wprowadzić w części na dole w zakładce input.

Uruchomienie programu również wykonujemy za pomocą przycisku Run w górnej części okna.

Ewentualne błędy składniowe lub błędy podczas uruchomienia programu zgłaszane są w dolnej części okna
na zakładce stderr.

W poniższym przykładzie zapomnieliśmy o zamknięciu jednego nawiasu.

Uwaga: Możliwe jest pobranie swojego kodu na dysk (przycisk po prawej stronie od Beautify). W ten sposób
możemy zrobić kopię zapasową naszej pracy. Należy bowiem pamiętać, że zamknięcie karty przeglądarki, w której
znajduje się środowisko uruchomieniowe lub przeładowanie strony może spowodować utracenie pracy wewnątrz
środowiska. Kopię zapasową można natomiast łatwo przywrócić ładując plik przyciskiem po lewej stronie od Run
lub otwierając plik w notatniku i kopiując jego zawartość do okienka wewnątrz środowiska.

INSTRUKCJA DO ARKUSZA PRZYKŁADOWEGO
1. Poniżej zapisuj swoje odpowiedzi. Oceniana jest tylko karta odpowiedzi na tej stronie.
2. W pytaniach zamkniętych z odpowiedziami (a), (b), (c), (d) do wyboru zakreśl znakiem X właściwą odpowiedź.

W razie pomyłki otocz błędnie zaznaczoną odpowiedź kółkiem i jeszcze raz zaznacz poprawną odpowiedź.
Poprawna jest zawsze dokładnie jedna z odpowiedzi.

3. Odpowiedzi w pozostałych pytaniach wpisz w pola w wyznaczonym miejscu.
4. Pamiętaj, że pracujesz samodzielnie. Możesz korzystać z komputera i przepisać, wzbogacać oraz uruchamiać

podane w zadaniach programy. Możesz też korzystać z internetowego środowiska programistycznego lub kal-
kulatora systemowego. Nie możesz korzystać z żadnych innych pomocy – tablic, map, słowników, leksykonów,
telefonów komórkowych, kalkulatorów kieszonkowych itp. Nie możesz używać wyszukiwarki internetowej,
szukać informacji na stronach internetowych, czy wykorzystywać komputera do komunikacji z innymi ludź-
mi lub narzędziami do generatywnej sztucznej inteligencji. Potrzebne informacje zawarte są w treści zadań.

5. W arkuszu przykładowym znajduje się jedynie jedno zadanie. Maksymalna liczba punktów do zdobycia wynosi
10 – po 1 punkcie za każde pytanie. Właściwy arkusz na etapie powiatowym będzie zawierał trzy zadania.
Korzystaj z przykładów ułatwiających zrozumienie zadań i spróbuj rozwiązać choć kilka pytań w każdym
zadaniu. Nie musisz rozwiązywać po kolei – niektóre pytania są trudne i warto je ominąć, by najpierw zająć
się łatwiejszymi pytaniami. Niektóre pytania można rozwiązać bez komputera, jedynie dzięki zrozumieniu
algorytmów podanych w treści zadań, ale w niektórych pytaniach skorzystanie z komputera może być jedyną
rozsądną metodą rozwiązania.

6. W niektórych przypadkach program dla danych z pytania będzie się wykonywał bardzo długo (dłużej niż czas
trwania konkursu) lub będzie zużywał bardzo dużo pamięci (więcej niż ma dostępny komputer).

KARTA ODPOWIEDZI DO ARKUSZA PRZYKŁADOWEGO
1.1. (a) (b) (c) (d)

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

Przykładowe zadanie
Rozważmy następujący program (możesz założyć, że obie wersje są równoważne):

C++

#include <iostream >
#include <vector >
using namespace std;

int main() {
int n;
cin >> n;
vector <int > liczby;
for (int i = 2; i <= n; i++) {

bool czy_podzielna = false;
for (int j : liczby)

if (i % j == 0) {
czy_podzielna = true;
break;

}
if (! czy_podzielna)

liczby.push_back(i);
}
for (int liczba : liczby)

cout << liczba << "␣";
return 0;

}

Python

n = int(input ())
liczby = []
for i in range(2, n + 1):

czy_podzielna = False
for j in liczby:

if i % j == 0:
czy_podzielna = True
break

if not czy_podzielna:
liczby.append(i)

for liczba in liczby:
print(liczba , end=’␣’)

Program przyjmuje na wejściu dodatnią liczbę całkowitą.
Przykład: Jeżeli do powyższego programu wprowadzić liczbę 10, to program wypisze następujące liczby (w tej

kolejności, oddzielone spacjami): 2, 3, 5, 7.

? 1.1. Co oblicza powyższy program?

(a) zbiór liczb nieparzystych mniejszych lub równych 𝑛,

(b) zbiór liczb pierwszych mniejszych lub równych 𝑛,

(c) zbiór liczb o takiej samej sumie cyfr co liczba 𝑛,

(d) zbiór wszystkich liczb naturalnych mniejszych lub równych 𝑛.

? 1.2. Co wypisze powyższy program dla danej 20?

? 1.3. Podaj przykład dodatniej liczby całkowitej, dla której powyższy program zwraca puste wyjście (nie
wypisuje nic).

? 1.4. Ile liczb parzystych wypisze powyższy program dla danej 500?

? 1.5. Ile jest dodatnich liczb całkowitych, które podane na wejściu do powyższego programu spowodują,
że wśród liczb wypisanych na wyjściu będzie liczba 1001?

? 1.6. Ile liczb wypisze powyższy program dla danej 200?

? 1.7. Ile wynosi suma liczb, które wypisze powyższy program dla danej 500?

? 1.8. Ile wynosi suma cyfr liczb, które wypisze powyższy program dla danej 500?

? 1.9. Podaj najmniejszą dodatnią liczbę całkowitą, która podana na wejściu do powyższego programu spowo-
duje wypisanie dokładnie 500 liczb.

? 1.10. Ile liczb wypisze powyższy program dla danej 2 000 000 (dwa miliony)?

Przykładowe rozwiązanie
Rozważmy następujący program (możesz założyć, że obie wersje są równoważne):

C++

#include <iostream >
#include <vector >
using namespace std;

int main() {
int n;
cin >> n;
vector <int > liczby;
for (int i = 2; i <= n; i++) {

bool czy_podzielna = false;
for (int j : liczby)

if (i % j == 0) {
czy_podzielna = true;
break;

}
if (! czy_podzielna)

liczby.push_back(i);
}
for (int liczba : liczby)

cout << liczba << "␣";
return 0;

}

Python

n = int(input ())
liczby = []
for i in range(2, n + 1):

czy_podzielna = False
for j in liczby:

if i % j == 0:
czy_podzielna = True
break

if not czy_podzielna:
liczby.append(i)

for liczba in liczby:
print(liczba , end=’␣’)

Program przyjmuje na wejściu dodatnią liczbę całkowitą.

Przykład: Jeżeli do powyższego programu wprowadzić liczbę 10, to program wypisze następujące liczby (w tej
kolejności, oddzielone spacjami): 2, 3, 5, 7.

? 1.1. Co oblicza powyższy program?

(a) zbiór liczb nieparzystych mniejszych lub równych 𝑛,

(b) zbiór liczb pierwszych mniejszych lub równych 𝑛,

(c) zbiór liczb o takiej samej sumie cyfr co liczba 𝑛,

(d) zbiór wszystkich liczb naturalnych mniejszych lub równych 𝑛.

Rozwiązanie: Nawet nie rozumiejąc powyższego programu i jedynie analizując sam przykład (i odpowiedź
do niego) można wywnioskować, że program ten generuje wszystkie liczby pierwsze mniejsze lub równe 𝑛.

Istotnie, najpierw wczytywana jest zmienna n, potem następuje pętla zewnętrzna, która testuje kolejne liczby
naturalne od 2 do n włącznie. Następnie sprawdzana jest podzielność (operacja modulo) przez każdą z wcześniej
wygenerowanych liczb. Jeżeli n nie dzieli się przez żadną z nich, to jest to liczba pierwsza i zostanie dodana na końcu
ciągu liczby. Następnie program wypisuje zawartość ciągu liczby oddzielając elementy pojedynczymi odstępami.

? 1.2. Co wypisze powyższy program dla danej 20?

Rozwiązanie: Rozumiejąc już z poprzedniego pytania co robi ten program, nietrudno się domyślić, że program ten
wypisuje liczby pierwsze nie większe niż 20. Są to 2, 3, 5, 7, 11, 13, 17, 19. Na karcie odpowiedzi należałoby je wypisać
w tej kolejności, oddzielając pojedynczymi odstępami (bo dokładnie tak wypisze program).

Możliwe jest oczywiście również przepisanie powyższego programu do środowiska uruchomieniowego i wpro-
wadzenie danej 20. Wówczas wystarczy jedynie przepisać na kartę odpowiedzi wyjście zwrócone przez środowisko.

? 1.3. Podaj przykład dodatniej liczby całkowitej, dla której powyższy program zwraca puste wyjście (nie
wypisuje nic).

Rozwiązanie: Jedyną poprawną odpowiedzią jest liczba 1. Wprowadzenie większej liczby spowoduje wypisanie
co najmniej dwójki, zaś wprowadzenie zera lub liczby ujemnej jest niedozwolone w treści pytania.

? 1.4. Ile liczb parzystych wypisze powyższy program dla danej 500?

Rozwiązanie: Jest tylko jedna liczba pierwsza, która jest parzysta (liczba 2). Oczywiście zostanie ona wypisana
dla każdego wejścia większego lub równego 2. Odpowiedzią na pytanie jest więc 1.

? 1.5. Ile jest dodatnich liczb całkowitych, które podane na wejściu do powyższego programu spowodują,
że wśród liczb wypisanych na wyjściu będzie liczba 1001?

Rozwiązanie: Liczba 1001 = 7 · 11 · 13 nie jest liczbą pierwszą. Można się o tym przekonać na różne sposoby:

• przepisując powyższy program do środowiska uruchomieniowego i uruchomić go dla dowolnej danej większej
lub równej 1002,

• implementując samodzielnie inny program, który sprawdza pierwszość liczby 1001,

• uruchamiając kalkulator systemowy i testując podzielność przez kilka pierwszych liczb pierwszych (wystarczy
znaleźć jeden dzielnik właściwy, żeby odrzucić liczbę i uznać ją jako złożoną).

? 1.6. Ile liczb wypisze powyższy program dla danej 200?

Rozwiązanie: Jednym z pomysłów jest po prostu uruchomić program i zobaczyć odpowiedź i policzyć „ręcznie”,
ile liczb zostało wypisanych.

Tych liczb jednak jest sporo, dlatego lepszym pomysłem może być stworzyć zmienną ile_liczb, którą na początku
programu ustawimy na 0, a instrukcję wypisywania liczby wymienić na zwiększenie tej zmiennej o 1.

Ewentualnie, zamiast tego, możemy wypisać długość ciągu liczby.

C++

#include <iostream >
#include <vector >
using namespace std;

int main() {
int n;
cin >> n;
vector <int > liczby;
for (int i = 2; i <= n; i++) {

bool czy_podzielna = false;
for (int j : liczby)

if (i % j == 0) {
czy_podzielna = true;
break;

}
if (! czy_podzielna)

liczby.push_back(i);
}
cout << liczby.size ();
return 0;

}

Python

n = int(input ())
liczby = []
for i in range(2, n + 1):

czy_podzielna = False
for j in liczby:

if i % j == 0:
czy_podzielna = True
break

if not czy_podzielna:
liczby.append(i)

print(len(liczby))

W każdy sposób powinniśmy uzyskać tę samą odpowiedź: 46.

? 1.7. Ile wynosi suma liczb, które wypisze powyższy program dla danej 500?

Rozwiązanie: Jednym z pomysłów jest po prostu uruchomić program i zobaczyć odpowiedź i naiwnie obliczyć
odpowiedź dodając do siebie wszystkie liczby z odpowiedzi za pomocą kalkulatora systemowego. Będzie to jednak
zajmować cenny czas konkursu i zachodzi wysokie ryzyko pomyłki przy przepisywaniu liczb.

Innym pomysłem jest zmodyfikować program, aby na końcu zamiast wypisać te liczby, obliczyć ich sumę.

C++

#include <iostream >
#include <vector >
using namespace std;

int main() {
int n;
cin >> n;
vector <int > liczby;
for (int i = 2; i <= n; i++) {

bool czy_podzielna = false;
for (int j : liczby)

if (i % j == 0) {
czy_podzielna = true;
break;

}
if (! czy_podzielna)

liczby.push_back(i);
}
int suma = 0;
for (int liczba : liczby)

suma += liczba;
cout << suma;
return 0;

}

Python

n = int(input ())
liczby = []
for i in range(2, n + 1):

czy_podzielna = False
for j in liczby:

if i % j == 0:
czy_podzielna = True
break

if not czy_podzielna:
liczby.append(i)

suma = 0
for liczba in liczby:

suma += liczba
print(suma)

Ostatecznie powinniśmy uzyskać sumę równą 21 536.

? 1.8. Ile wynosi suma cyfr liczb, które wypisze powyższy program dla danej 500?

Rozwiązanie: Wzbogacamy powyższy program o funkcję obliczającą sumę cyfr, a następnie używamy tej funkcji,
żeby obliczyć to, czego potrzebujemy.

C++

#include <iostream >
#include <vector >
using namespace std;

int suma_cyfr(int n) {
int wynik = 0;
while (n > 0) {

wynik += n % 10;
n /= 10;

}
return wynik;

}

int main() {
int n;
cin >> n;
vector <int > liczby;
for (int i = 2; i <= n; i++) {

bool czy_podzielna = false;
for (int j : liczby)

if (i % j == 0) {
czy_podzielna = true;
break;

}
if (! czy_podzielna)

liczby.push_back(i);
}
int suma = 0;
for (int liczba : liczby)

suma += suma_cyfr(liczba);
cout << suma;
return 0;

}

Python

def suma_cyfr(n):
wynik = 0
while n > 0:

wynik += n % 10
n //= 10

return wynik

n = int(input ())
liczby = []
for i in range(2, n + 1):

czy_podzielna = False
for j in liczby:

if i % j == 0:
czy_podzielna = True
break

if not czy_podzielna:
liczby.append(i)

suma = 0
for liczba in liczby:

suma += suma_cyfr(liczba)
print(suma)

Ostatecznie uzyskujemy wynik 1061.

? 1.9. Podaj najmniejszą dodatnią liczbę całkowitą, która podana na wejściu do powyższego programu spowo-
duje wypisanie dokładnie 500 liczb.

Rozwiązanie: Możemy uruchomić program z pytania 1.6 dla jakiejś danej (na przykład 2000) i zobaczyć odpowiedź
(ile liczb byłoby wypisanych, w tym przypadku 303 liczby). Jeżeli zostanie wypisane za mało, powiększamy wejście
(np. próbujemy z daną 5000). Uzyskujemy wynik 669, a więc za dużo. Możemy więc (w podobny sposób jak w wy-
szukiwaniu binarnym) spróbować daną 3500. Otrzymamy 489 liczb pierwszych czyli niewiele mniej niż powinniśmy
uzyskać. W ten sposób, po jeszcze kilku próbach możemy uzyskać odpowiedź do zadania: 3571.

Innym pomysłem jest dodać do programu z pytania 1.6 warunek, który przerywa wykonanie programu, gdy
liczby będzie zawierać 500 elementów i uruchomić program dla dostatecznie dużej wartości zmiennej n (na przykład
5000).

Jeszcze innym pomysłem jest zamknąć program z pytania 1.6 w funkcję i naiwnie testować z użyciem brutalnej
siły komputera coraz większe parametry.

C++

#include <iostream >
#include <vector >
using namespace std;

int ile_liczb(int n) {
vector <int > liczby;
for (int i = 2; i <= n; i++) {

bool czy_podzielna = false;
for (int j : liczby)

if (i % j == 0) {
czy_podzielna = true;
break;

}
if (! czy_podzielna)

liczby.push_back(i);
}
return liczby.size ();

}

int main() {
int n = 1;
while (true) {

if (ile_liczb(n) == 500) {
cout << n;
return 0;

}
n++;

}
}

Python

def ile_liczb(n):
liczby = []
for i in range(2, n + 1):

czy_podzielna = False
for j in liczby:

if i % j == 0:
czy_podzielna = True
break

if not czy_podzielna:
liczby.append(i)

return len(liczby)

n = 1
while True:

if ile_liczb(n) == 500:
print(n)
quit()

n += 1

? 1.10. Ile liczb wypisze powyższy program dla danej 2 000 000 (dwa miliony)?

Rozwiązanie: Naturalnym pomysłem byłoby uruchomić program z pytania 1.6 dla danej 2 000 000 zamiast dla
danej 200. Okazuje się jednak, że podana w zadaniu implementacja jest bardzo niewydajna. Nie można oczeki-
wać, że program zakończy się w rozsądnym czasie dla takiej danej. Ale gdyby móc zaczekać odpowiednio długo,
to program wypisałby jednak jakąś odpowiedź.

Należy obliczyć, ile jest liczb pierwszych mniejszych lub równych 2 000 000. Można to osiągnąć na przykład
poprawiając implementację pokazaną w zadaniu.

C++

#include <iostream >
#include <vector >
using namespace std;

int main() {
int n;
cin >> n;
vector <int > liczby;
for (int i = 2; i <= n; i++) {

bool czy_podzielna = false;
for (int j : liczby) {

if (i % j == 0) {
czy_podzielna = true;
break;

}
// ponizej jest optymalizacja
if (j * j > n) break;

}
if (! czy_podzielna)

liczby.push_back(i);
}
cout << liczby.size ();
return 0;

}

Python

n = int(input ())
liczby = []
for i in range(2, n + 1):

czy_podzielna = False
for j in liczby:

if i % j == 0:
czy_podzielna = True
break

ponizej jest optymalizacja
if j * j > n: break

if not czy_podzielna:
liczby.append(i)

print(len(liczby))

Możemy zastosować tę optymalizację, ponieważ każda liczba złożona 𝑛 musi mieć dzielnik nie przekraczający√
𝑛. Istotnie, liczba złożona 𝑛 musi się dać przedstawić jako iloczyn dwóch czynników 𝑝 oraz 𝑞, takich, że 𝑝 jest liczbą

pierwszą oraz 𝑝 ≤ 𝑞. Gdyby 𝑝 było większe od pierwiastka z 𝑛, to iloczyn 𝑝 · 𝑞 przekroczyłby 𝑛.
Tak napisany program powinien wykonać się w czasie kilku sekund.

Innym pomysłem (na nawet nieco szybszy program) jest zaimplementować znajdowanie liczb pierwszych metodą
sita Eratostenesa.

C++

#include <iostream >
#include <vector >
using namespace std;

int main() {
int n;
cin >> n;
vector <bool > czy_zlozona(n+1, false);
for (int i = 2; i * i <= n; i++) {

if (czy_zlozona[i]) continue;
for (int j = i * i; j <= n; j += i)

czy_zlozona[j] = true;
}
int ile_pierwszych = 0;
for (int i = 2; i <= n; i++)

if (! czy_zlozona[i])
ile_pierwszych ++;

cout << ile_pierwszych;
return 0;

}

Python

n = int(input ())
czy_zlozona = [False] * (n+1)
for i in range(2, int(n ** 0.5) + 1):

if czy_zlozona[i]: continue
for j in range (2 * i, n+1, i):

czy_zlozona[j] = True
ile_pierwszych = 0
for i in range(2, n+1):

if not czy_zlozona[i]:
ile_pierwszych += 1

print(ile_pierwszych)

W obu przypadkach powinniśmy uzyskać tę samą odpowiedź: 148 933.

